
R. Moreno-Díaz et al. (Eds.): EUROCAST 2007, LNCS 4739, pp. 352–359, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Evolution of the Design and Implementation of Tutor: A
Web-Based Educational System for University Courses

Roberto F. Arroyo, Miguel J. Hornos, and Rosana Montes

Dept. de Lenguajes y Sistemas Informáticos, E.T.S.I. Informática y de Telecomunicación,
Universidad de Granada, C/ Periodista Saucedo Aranda, s/n, 18071 Granada, Spain

{robfram,mhornos,rosana}@ugr.es

Abstract. We have designed a web platform to support the teaching and
learning of certain subjects taught in the University of Granada. This platform
facilitates students and teachers diverse educational tasks and provides an
effective management of academic data. Originally, it was intended for a
reduced array of subjects, but as a result of its increasing success and use in a
greater number of subjects, we have been encouraged to extend it. However, the
approach used in the early design was a classical life cycle and did not take into
account either future needs or its hypermedia system nature, which is even
more important and requires a special processing, which is different from the
one required for conventional applications. From our experience, we have
learned and have taken into account the detected lacks to make the platform
progress, and we have provided a new design thus changing completely its
philosophy, structure and interface. We will hereby describe the main
characteristics of both designs (the first and the new one) in order to highlight
the evolution of the system.

1 Introduction

New technologies have extended to the global environments of our society,
facilitating many activities and admitting tasks that were unlikely years ago. In
education, the teaching staffs have recognized the need for effective tools to manage
information resources for their students’ progress and for their subjects. The European
Space of Higher Education [1,2] promotes the employment of new technologies in
order to increase the cooperation among universities from its member countries and
improve the educational process quality in them. In recent years, and in the context of
this new educational framework, the development of electronic communication
channels has allowed higher levels of cooperation within the educational community.
Nowadays, computers are everywhere and university students are able to
communicate no matter where they are. ICT (Information and Communication
Technologies) as the World Wide Web [3] have become one of the main mechanisms
for remote interaction, and have reshaped both society and universities all over the
world. Universities must capitalize on the web for teaching and learning, and the
increasing use of web-based systems is a progressive manner to be on the way.

 Evolution of the Design and Implementation of Tutor 353

According to these needs, the University of Granada has created several plans of
educational quality [4,5]. Within them, we are developing a teaching innovation
project with the purpose of building a web-based platform, called Tutor
(http://tutor.ugr.es), which provides a toolkit to support the educational activities of
both teaching staff and students.

This web-based educational system, which is particularly intended for university
courses, must provide an adequate pedagogical approach in order to increase its
usefulness and achieve the following main proposed objectives:

− To provide additional information focused on academic contents, such as
subject syllabus, didactic material, glossaries, learning activities, etc.

− To establish new communication and interaction channels among the different
academic members.

− A better management of all registered users provide a secure authentication
mechanism to preserve the users’ identity and privacy of their data.

The system we developed in the beginning was adequate for a limited number of
users and subjects, but due to its design, its adaptation to such a big growth (in users,
contents and specially in functionality) requires a disproportionate effort. This mainly
occurs because the hypermedia nature was not taken into account; thereby, the
information storage was not separated from navigation aspects; a formal user
modelling was not performed and mechanisms to carry out a satisfactory adaptation
were not defined. For all these reasons, we have decided to develop a new version of
Tutor, which, as well as improving the user interface and navigation system, admits
adaptiveness and adaptability.

The rest of the paper is organized as follows: Section 2 will present the context and
design structure regarding the first implementation of the platform. Section 3 will
show the architecture and design principles followed in the development of a new
version of the system. Finally, in the last section the conclusions will be outlined.

2 Initial Design

The platform initially designed follows a role-driven approach, using a role-based
model. Firstly, the system roles are distinguished and the different parts that made up
the whole system are developed. Next, we establish relations between the roles and
parts using their operations, which will be implemented on a later developing stage.
For operation modelling we use a user-driven design, which provides a higher
abstraction level for system task description and separates the concepts of users and
roles.

Using a role-driven approach allows us to get different functionalities according to
the role played, which is reflected on the user interface. The system distinguishes
between four different user profiles (see Figure 1): administrator, teacher, student and
unauthenticated user. When users log in the system, it automatically recognizes the
roles they play. Once access has been granted, the system displays a menu with the
sections and actions allowed in conformity with the role the user is playing.

The system is based on a client/server [6] approach with dynamic content
generation. It uses Apache [7] as a web server of dynamic pages, which is

354 R.F. Arroyo, M.J. Hornos, and R. Montes

accompanied by MySQL [8], a relational data base used for data storage. A collection
of PHP [9] scripts implements operations and generates the HTML interface. This
part is server side, both for storing and executing. We use a Sun server to support
many simultaneous connections. As a client, the user can use any HTML[10]/CSS[11]
compatible web browser to access the platform from any place with an Internet
connection. In brief, data manipulation is not separated from the own functionality of
the application, so that queries and modifications to the database contents are carried
out together with the code processing, thus adding complexity to the code updating
and data maintenance.

Fig. 1. Structure of user profiles and roles

The main problems presented in this implementation are the lack of some
important features. Among the latter we can highlight the following ones:

− The whole system is short of friendly navigability. A series of menu items and
information nodes are not easy to find, and many clicks are needed to access
some of them.

− It has not a clear look-and-feel interface. The appearance of the system is
neither very elegant nor intuitive.

− The implementation is not modularised, since the same or similar functionality
is reimplemented in several fragments of code. This increases the number of
programming errors and makes its maintenance difficult. At the outset, every
role had its own functions, but several roles had the same functionality. Since
every role has its own implementation, then, for the same functionality, there are
different implementations in the system. Moreover, the latest implementations
consider all the roles sharing the same implementation: internally, the function
determines which portion of specific code must be executed according to the
role played by the user. All this leads to a non-homogeneous implementation.

− The system does not support adaptability or customisation. Different users
cannot have different interfaces.

− It is quite difficult to extend the system with new functionalities without
breaking the system. It has not been designed to be extended easily.

 Evolution of the Design and Implementation of Tutor 355

− The maintenance of the system is hard. Due to some of the above mentioned
items, fixing problems in the whole platform is a hard work.

− It does not follow the XHTML standard [12], using only the HTML document
definition.

3 New Design of the Platform

The motivations for a new design from scratch are to solve the lacks of the earlier
model while maintaining the same goals of the previous version of the platform.
Therefore, we are looking for a 24/7 web-based system to support educational tasks
and academic data management that provides additional student-student, teacher-
student and teacher-teacher communication channels. Basically, the differences were
conceptual, so that we do not want to ignore its hypermedia nature, developing it
under the object oriented paradigm, separating contents from presentation and using
an implicit role assignment method. With all this, we pretend to avoid and solve the
most important problems of the previous version, namely:

− A greater number of users requires different and new functionalities.
− Some users get lost trying to use some of its current applications.
− The maintenance is expensive due to a redundant code.
− The navigability should be more intuitive and direct (with less mouse clicks).
− The system should be scalable and future-prone.
− The new XHTML/CSS technology should be used.
− It would be interesting to provide a multi-language platform, since the mother

tongue of many users (e.g. foreign students) is not Spanish.

Tackling these main goals and features, we have designed the new model for the
platform implementation.

3.1 Design Philosophy

The previous design was oriented to the role (or user profile), directing both the way
in which the data were stored and the form of presentation and navigation to the role
played by the user navigating in the system, independently from the part of the system
being visited. The new design completely changes this orientation, proposing an
object oriented design (data and operations), where what is visited, and not only who
visits it, is also important. The first-level objects we have considered include the
system users, subjects, degree courses, groups, faculties and departments, as well as
notices and internal messages. All these objects constitute the system navigability
core, and are the main information structure of the system; hence, their design
deserves a major consideration. The new design is divided into two layers (see Figure
2): data storage and adaptation to each user. The connection between them is the user
model, which stores, maintains and updates the user’s main features.

As we have already mentioned, one of the main objectives of the new design is to
separate contents from presentation. This admits multiple presentations (taking into
account look-and-feel, language, restrictions, etc.) associated with a given piece of
contents. In this design, the data is stored in a relational database, and the system
queries the database to display the contents. Therefore, the data storage layer converts

356 R.F. Arroyo, M.J. Hornos, and R. Montes

relational data into the object oriented structure to be shown. Later, the selected
contents will be published according to navigability restrictions, user capabilities and
preferences, and style templates.

Another important objective is modularity. Common functionalities must be
implemented only once and be shared among modules. Additionally, all the database
queries are encapsulated in a separate module, outside any other module. Finally, to
make up the final appearance of the information, we use XHTML templates with
pattern replacing.

Fig. 2. New design of the system: two independent layers linked by the user model

3.2 Structure

The data storage layer contains the information. This layer is composed of two levels:
the data level and the object level. The first one deals with the relational database,
whilst the second is responsible for converting object-oriented queries into relational
ones and relational data into object oriented structures.

The data presentation related to the personal and hypermedia criteria is carried out
in the adaptation layer, which is made up of two different levels. The level of
capabilities is responsible for determining which contents are displayed in accordance
with the navigability patterns and with the relation with the user himself, e.g. a
teacher has access to their students’ e-cards, but not to those belonging to students
that are not enrolled in any of his/her subjects. The level of preferences modifies the
presentation and filters the contents in accordance with the user preferences and
navigability restrictions.

Figure 3 shows the internal structure of both layers, and an example of the
conversion of relational data into an object oriented structure carried out by the object
level.

Fig. 3. Structure of the new model

 Evolution of the Design and Implementation of Tutor 357

3.3 Template System

The different presentations of the contents are prepared using a template system. We
have defined the following four different template levels:

− System template, which is the first template the system uses. It shapes the main
appearance and structure of the whole system, and determines which parts must
be filled with next templates.

− User model template, which admits changing parts of the system template
according to the data stores in the user model. For example, accessibility issues
can be attended in this template.

− Capability template, which adapts the general appearance according to the user
capabilities. This allows customizing the user interface and navigability of
teachers, students, administrators, or the appearance of a determined object in
relation to a specific user.

Fig. 4. Template processing: The final web page is generated by making up four different
templates and accessing the database

Fig. 5. Replacement of key values to convert templates into the final document

358 R.F. Arroyo, M.J. Hornos, and R. Montes

− User template, which lets the users customize their user interface. In such a
way, every system user is able to choose certain aspects in order to customize
the appearance of the contents presented by the system.

Figure 4 shows our sequential processing of the templates, from the system
template to the final web page to be shown.

The final contents of the web page to be displayed are obtained by successively
replacing key values (included in the different templates) with the real data, which
could be from a simple string to another group of key values. The final document is
obtained after all the key values are replaced. Figure 5 shows an example of this
replacement.

4 Conclusions

We have presented how the design and implementation of a web-based educational
platform has evolved from its initial version to the new one, in such a way that the
latter constitutes an example of applying quality design principles to a hypermedia
system. The evaluation of the first version of the platform showed that it lacked the
essential basis to be easily flexible and adaptable to users, being necessary to spend a
considerable effort to add new functionalities, as well as a more intuitive navigation
system. We have also learned that the followed role-orientation, without taking into
account the visited information, did not contribute to improve the system navigation.

The main problems detected in the previous version have been solved with the new
design, while its positive aspects have been kept. The perspective change from role-
orientation to object-orientation allows a more intuitive and controlled navigation,
with a better structured presentation of the information. This admits an easier
expansion and upgrading of the platform to new requirements and needs, in such a
way that it is at the same time more scalable, and does not affect negatively the
provided functionality. The active role of the system to make decisions has also been
increased, by replacing the manual selection of the user profile with an automatic
query to determine the user’s capabilities while the user visits any page of the system.

The new design establishes two independent but interrelated layers: the data
storage layer and the adaptation layer. The link between both layers is the user model.
The data storage layer is structured in two levels: the data level and the object level.
The former maintains a relational representation of the information and communicates
with the DBMS, while the latter builds extended objects in accordance with the
existing relations among data and communicates with the adaptation layer. The
adaptation layer performs an adaptive process in two levels, deciding respectively
what to show (i.e. the contents and their navigability) and how to show it (i.e. the
presentation of these contents taking into account the navigability restrictions, which
can hide part of the selected contents to this user). The first level depends on the
user’s capabilities, while the second one depends on the preferences established by
each user.

The implementation of the new version of the platform is in an advanced state, but
not finished, so we are currently working in order to finish its development, with the
aim of replacing the previous version. We also plan to increase the functionalities of

 Evolution of the Design and Implementation of Tutor 359

the new system, and, at the users’ request, extending the available tools with new
options and operations and adding new tools to the ones already included in the
platform.

Acknowledgments

This work is financed by an Educational Innovation Project from the University of
Granada (code 05-03-46).

References

1. Ministers responsible for Higher Education: Realising the European Higher Education
Area. Berlin, Germany: Official Communication (2003)

2. Treasury of Education, Culture and Sport: The integration of the Spanish university system
in the European Space of Higher Education. White paper (in Spanish) (2003)

3. Berners-Lee, T.: Weaving the Web: The original design and ultimate destiny of the World
Wide Web by its inventor. Harper Collins, New York (1999)

4. Vice-chancellor of Planning, Quality and Educational Evaluation, Plan of Educational
Quality, /2004. University of Granada, Granada 2001 (in Spanish) (2001)

5. Vice-chancellor of Planning, Quality and Educational Evaluation: Plan of Educational
Quality, /2008. University of Granada, Granada 2005 (in Spanish) (2005)

6. Edelstein, H.: Unraveling Client/Server Architecture. DBMS 7(5), 34–41 (1994)
7. The Apache Software Foundation, online at, http://www.apache.org/
8. MySQL AB, online at, http://www.mysql.com/
9. Welling, L., Thomson, L.: PHP and MySQL Web Development. Book & CD edn, Sams,

Crawfordsville (2001)
10. W3C: HTML, online at, http://www.w3.org/html/
11. W3C: CSS, online at, http://www.w3.org/Style/CSS/
12. W3C: XHTML2 Working Group Home Page, online at, http://www.w3c.org/MarkUp/

	Evolution of the Design and Implementation of Tutor: A Web-Based Educational System for University Courses
	Introduction
	Initial Design
	New Design of the Platform
	Design Philosophy
	Structure
	Template System

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

