
An Importance Sampling Method for arbitrary
BRDFs

Rosana Montes, Carlos Ureña, Rubén Garćıa, and Miguel Lastra
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Abstract. This paper introduces a new BRDF sampling method with
reduced variance, which is based on a hierarchical adaptive PDF. This
PDF also is based on rejection sampling with a bounded average number
of trials, even in regions where the BRDF exhibits high variations. Our
algorithm works in an appropiate way with both physical, analytical and
measured reflectance models. Reflected directions are sampled by using
importance sampling of the BRDF times the cosine term. This fact im-
proves computation of reflected radiance when Monte-Carlo integration
is used in Global Illumination.

1 Introduction

In Global Illumination software the Bidirectional Reflectance Distribution Func-
tion (BRDF) is used to describe how light is scattered at surfaces, and it de-
termines the appearance of objects. Many reflection models have been proposed
which account for real visual effects produced by object-to-object reflections,
self-shadowing, retro-reflection, etc. Monte Carlo (MC) algorithms, which rely
on BRDF sampling, include distributed ray tracing [6], path tracing [11], bidi-
rectional path tracing [12], density estimation [23] and photon mapping [10].

A mayor challenge in incorporating complex BRDFs into a Monte-Carlo-
based global illumination system is efficiency in sampling, however, complex re-
flectance models have no corresponding sampling strategies to use with. In [14]
a Monte-Carlo importance sampling technique was presented for general ana-
lytic and measured BRDFs based on its factorization. We have used factorized
approximations of those BRDFs in order to compare Lawrence’s approach with
ours.

This document presents a method to improve Monte-Carlo random walks by
applying importance sampling of BRDFs to reduce the variance of the estimator.
Reflected directions are generated with a probability density function that is
exactly proportional to the BRDF times the cosine term. For generality, we have
sampled many parametric BRDFs that are well-known in computer graphics:
for plastics the Phong model and its variants [20, 5, 16, 13] and [22], for metals
the He model [9], Strauss [24], Minnaert Lunar reflectance [18], for rough and
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polished surfaces based on Torrance’s microfacet representation [4, 7, 21] and
[19]. Anisotropy models [25, 2, 3] are also considered. We are able to sample
reflectance data from measurements as well. We use a subset of the 100 materials
of Mitsubishi Electric Research Laboratories (MERL) BRDF data base1. In fact
our representation makes no assumptions on the BRDF model but the need for
evaluating the function giving two directions.

The rest of this document is organized as follow: Section 2 gives an overview
of current techniques for sampling the BRDF and explains how importance sam-
pling works when Monte Carlo integration is used. Section 3 provides details of
our algorithm which adaptively samples the BRDF. Results and time-error anal-
ysis are given in Section 4. Some discussion and ideas for future work conclude
the paper.

2 Reflectance Equation and Monte-Carlo Estimation

One of the main interests in Global Illumination relies on the evaluation of the
reflected radiance, by using the reflectance equation:

Lr(wo)
def=

∫
Ω

fr(wo,wi)Li(wi) (wi · n) dσ(wi) (1)

Here Li stands for incoming radiance and Lr for reflected radiance. The above
equation is usually solved in global illumination by using MC integration, be-
cause it is often impossible to obtain analytic expressions for Lr or Li. wo =
(ux, uy, uz) and wi = (vx, vy, vz) are two unit-vectors in Ω, the hemisphere of

unit radius with n def= (0, 0, 1).

2.1 MC Numerical Estimation of Lr

Integration over the hemisphere Ω can be done by using three related measures
defined in that domain: (1) the solid angle measure (which we note as σ), (2)
the projected solid angle measure (σp) and (3) an area measure A.

(w · n) dσ(w) = dσp(w) = dA(h(w)) (2)

Let D denote the unit radius disc in R2. By using equation (2), the reflectance
equation (1) can be alternatively expressed as:

Lr(wo) =
∫
D

fr(wo,wxy)Li(wxy) dA(x, y) (3)

where wxy ∈ D is the projection of wi onto D.
When numerical integration of an arbitrary integrable (w.r.t. a measure µ)

function g ∈ S → R is done by using MC techniques, random samples in S must
be generated from a random variable with probability measure P —which obeys
1 MERL data base: <http://www.merl.com/brdf/> [last visit November 2007]
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P (S) = 1 and it is absolutely continuous w.r.t µ—. The function p
def= dP/dµ

is frequently called the probability density function (PDF) of those samples.
From n such random samples (namely {x1, . . . , xn}) we can build a new random
variable (r.v.) Xn whose mean value is the integral I we want to compute. This
is done by generating samples sets whose PDF is p, and evaluating Xn on them.
The variance of Xn is a value which determines the efficiency of the method.

Designing efficient MC sampling methods usually means designing good PDFs
by using all available information about g. The closer p is to g/I the less variance
we obtain (ideally p = g/I). Consider now integrals like equation (1) and assume
we have no knowledge about irradiance or other terms of the integrand, but with
a known BRDF. In these circumstances, the best option is to use a PDF which
is as proportional as possible to the BRDF times the cosine term.

To compute an estimator of Lr(wo), as defined in equation (1), for a given
wo ∈ Ω, we must use a set of samples (s1, . . . , sn), which are n identically
distributed random vectors defined in Ω, with probability measure Pwo (the
probability measure depends on wo). With this sample set, the estimator of the
outgoing radiance can be obtained as:

Lr(wo) ≈
1
n

n∑
k=1

fr(wo, sk) (sk · n)
qwo

(sk)
Li(sk) (4)

where qwo = dPwo/dσ is the PDF associated to Pwo .
An alternative expression can be given by using equation (3) instead of (1)

and it is used in our algorithm. In this case, the set of samples ((x1, y1), . . . , (xn, yn))
contains random vectors in D instead of in Ω, and the estimator becomes:

Lr(wo) ≈
1
n

n∑
k=1

fr(wo, sk)
pwo

(xk, yk)
Li(sk) (5)

where sk is the projection of (xk, yk) onto Ω.
In this case, the PDF pwo

= dPwo
/dσp = dPwo

/dA is defined w.r.t. area
measure A, and its domain is D. Finally, from equations (4) and (5) we conclude
that the PDF must be evaluated, and thus we should be capable to do this in a
short time.

2.2 Sampling the BRDF

Lobe distribution sampling A well known class of BRDF models are based
on cosine-lobes, which have an associated algorithm for sampling. Within this
category are Phong, Blinn and their respective normalized versions delivered by
Lewis, Lafortune and Ward. The single-lobe BRDF is defined as:

fr(wo,wi) = C(n) (wi ·wor)
n

where n ≥ 0 is a parameter, and C(n) is a normalization factor which normally
depends on n and ensures these BRDFs obey conservation of energy.
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For this BRDF, a related and normalized PDF can be defined as:

pwo
(wi) =

1
N1(wor, n)

(wi ·wor)
n

where N1 ensures normalization and is defined as:

N1(a, n) def=
∫
Ω

(wi · a)n dσ(wi)

N1 is called a single axis moment around axis a and analytical expressions
for it are known [1]. In order to obtain samples distributed according to this
PDF, we obtain a random vector wi whose spherical coordinates are:

(θwi, φwi) =
(
arccos

(
ξ

1
n + 1
1

)
, 2π ξ2

)
where ξ1 and ξ1 are two independent uniformly distributed random variables
with values in [0, 1).

A variant of this PDF avoids evaluation of N1 by using samples on the whole
sphere S2, instead of only the hemisphere Ω. Taking into account the part of
the lobe under the surface, it makes N1(wo, n) independent of wo and equal
to N1(n, n) = 2π/(n + 1). This PDF is defined in the sphere, however, when
a sample is produced under the surface, the contribution of that sample to the
integral is taken as zero. The algorithm is faster and still unbiased, but it has
higher variance when wo approaches grazing angles.

Cosine-lobe sampling is the most efficient sampling for Phong BRDF and its
variations but this scheme is not suitable for non-lobe-based BRDFs.

The Factorized BRDF Representation Recent work about effective impor-
tance sampling strategies for arbitrary BRDFs is Lawrence’s factorization of the
BRDF [14]. This function is decomposed as the product of two 1D functions,
stored compactly in tabular form, and then it is used for sampling.

A first factorization, after a reparametrization based on the half angle, gives a
decomposition into 2D factors of the initial data matrix Y containing Nw × Nwo

values along the outgoing elevation angle and the outgoing azimuthal angle. After
that, Y is approximated by the product of two matrices of lower dimension: G
is Nw × J and F is an J × Nwo matrix. Both matrices are always positive by
using the non-negative matrix factorization (NMF) method.

A second factorization of the view independent G matrix leads to the product
of two matrices of one dimension, very easy to sample by numerical inversion of
the Cumulative Distribution Function after normalization.

fr(wo,wi) cos(wi) ≈
J∑
j

Fj(wo)
K∑
k

ujk(θw) vjk(φw).

Each L = J ×K factor is intuitively the approximation of a specific lobe of the
original BRDF. When the factorization is used in generating random directions
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two steps are necessary. First sampling according to F selects one of the L
lobes that contributes more energy for the current view. The CDF for this step
is recomputed when the outgoing direction changes. Next the hemisphere is
sampled according to selected lobe l by sequential generation of elevation and
azimuthal angles using pre-computed CDF for factors ul and vl respectively.

The Cascade CDF Method An improvement of the Factorized BRDF rep-
resentation is the Cascade CDF method [15]. This is an adaptive technique
orientated to the sampling of non uniform functions. The authors apply it to en-
vironment maps (EM) and acquired BRDFs. This technique is based on sampling
by inversion of the CDF. Instead of uniformly distributing the samples, it uses a
second and equivalent distribution which is compact. For this to be solved, they
start with a N-dimensional PDF and divide it into the product of a 1D marginal
distribution p̃ and a set of 1D conditional distributions. Compression is carried
out using the Douglas-Peucker greedy algorithm which approximates a curve (in
this case the CDF) employing an optimal number of segments.

3 Our Algorithm

We consider the reflectance equation given in (3), and the estimator in (5).
The proposed sampling scheme yields more samples in areas where the BRDF
times the cosine term has higher values, thus achieving importance sampling.
The usage of area measure A on D is better than σ on Ω because this makes
it unnecessary to include the cosine term in the formulation or the computa-
tion, making the first simpler and the second faster and more reliable. Also, the
algorithm is independent of the BRDF and avoids user guidance.

Our method is based on rejection sampling [8]. This is a very simple and well
known technique that yields a PDF proportional to any function g ∈ G → R.
It only requires that g can be evaluated, and its maximum value m in G to
be known. However, it runs a loop which in fact can be executed a unbounded
number of times, thus it potentially yields large computing times even in the
cases when g can be quickly evaluated.

The probability for a sample to be accepted is e/m, where e > 0 is the average
value of g in the domain G. The number of times the main loop is executed (until
a valid sample is obtained) is a geometric distribution with success probability
e/m, and thus the average number of trials is m/e, which can be quite large for
e� m.

The core of our approach is an hierarchical quadtree structure which can be
used to efficiently obtain samples with a PDF exactly proportional to the target
function. The adaptive approach checks whether a region can be safely used for
raw rejection sampling. This check consists on evaluating, for that region, the
average number nt of trials with rejection sampling in that region. This can be
known provided we know both e and m for the region. If nt is above a threshold
number nmax, then the region is subdivided in four, and the criterion is applied
to these four subregions. Otherwise, the region is not subdivided. If we apply this
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recursive process starting from D (the unit radius disc centered at the origin),
we obtain a quadtree which can be used to efficiently sample the BRDF. In the
next section, further details are given about this process.

3.1 Building the Adaptive Structures

As the sampling process requires a PDF proportional to fr(wo, ·) for arbitrary
values of wo and for a finite collection of BRDFs in a scene, it is necessary to
create a quadtree structure that subdivides the unit disc domain for each (fr,wo)
pair. In the case of wo, a finite set of vectors S = {w1, . . . ,wn} can be used.
When an arbitrary wo is given, it is necessary to select the nearest wj to wo and
use the corresponding structure. The error induced by using wj instead of wo

can be reduced by using a large n and uniformly distributing vectors wj . Note
that, since we assume the BRDF to be isotropic, it is enough for S to include
vectors in the plane XZ, thus a rotation must be applied to wo before finding
the nearest wj . The inverse rotation must be applied to resulting samples.

For a given quadtree in this structure, each node i has an associated region
Ri ⊆ D, which it is a square area defined by:

Ri = [ui, ui + si)× [vi, vi + si)

where (ui, vi) is the lower left vertex of the region boundary and si is the edge
length. The region associated to the root node is the full domain [−1, 1]2.

The algorithm creates the root node and checks the criteria for subdivision.
If the split is necessary, four new child nodes are created, each one with an
associated region with a edge length size half of that of the parent. Then, this
process is recursively applied to these new four nodes. The recursive algorithm
ends in case no split is necessary or a predefined maximal depth is reached.

In order to check the subdivision criteria for node i these values must be
computed:

Mi = max{ fr(wo,wixy) | (x, y) ∈ Ri }

Ii =
∫
Ri

fr(wo,wixy) dA(x, y)

Vi = s2i Mi

Mi is the smaller upper bound for values of fr in the i-th region, Ii is the integral
of the BRDF in the region and Vi is the volume of the space where rejection
sampling is done. Both Mi and Ii can be computed by evaluating fr on a very
dense grid of points in Ri creating the quadtree, or alternatively a bottom-up
approach could be used which starts by obtaining these values at the maximum
depth possible (with a high resolution grid) and then it stores them so the data
can be used during tree construction. Therefore, the algorithm only requires to
be able to evaluate the BRDF. In any case, it holds that the sum of the Ii values
for the four children of a parent node must be equal to that value on the parent.
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The subdivision criteria used must ensure that rejection sampling on leaf
nodes can be done with an a priori bounded number of average trials nmax.
This can be easily ensuring that:

nmax
Ii
Vi
≥ 1 (6)

where the probability for accepting a sample is Ii/Vi.
When this inequality does not hold, the node must be split. In our imple-

mentation, we have used nmax = 2. The larger nmax the less memory that is
needed (because the quadtree has smaller depth) and the less time is used for
quadtree traversal, but more time is needed for rejection sampling on leaf nodes.

3.2 Obtaining Sample Directions

Generating a random direction involves selecting a leaf node and then doing
rejection sampling on that node. If the i-th node is a leaf node, then the proba-
bility for selecting it must be proportional to Ii (more exactly it is Ii/I0, if we
assume the root node has index 0). A leaf node is selected following a path from
the root to the leaf. On each step, starting from the root, the integrals Ii of the
descendant nodes are used for randomly choosing one child to continue the path
down.

To do this, we can store in each node i four values Fi0, . . . , Fi3, defined as:

Fik =

∑k
j=0 ICij∑3
j=0 ICij

where Cij is the index of i-th node j-th child node (note that Fi3 = 1). Leaf
selection is then simply a loop:

algorithm LeafNodeSelection
i := 0 (index of root node)
while i-th node is not a leaf do begin

r := uniform random value in [0, 1)
j := min. natural such that r < Fij
i := j

end
return i

Rejection sampling on the resulting i-th node is carried out. This consists
in selecting a random vector (x, y, z) ⊆ R3 with uniform distribution in the
prism Ri × [0,Mi]. The value z =

√
x2 + y2 is then obtained and the condi-

tion fr(wo,wxy) < z is checked. If it holds, wxy is returned as the resulting
sample, otherwise a new sample must be generated and checked. A sample is
valid with probability Ii/Vi, which is necessarily greater than 1/nmax, because
of inequality (6).
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Fig. 1. Both images show a distribution of 2500 samples obtained with our disc method.
The left one shows how the samples match the BRDF function (in red). The image on
the right is the projection on disc of those directions.

With our method samples on the disc will follow a distribution where more
samples are placed in parts of the domain where the function has higher values.
In fact, it is exactly proportional to the BRDF.

3.3 Quadtree Traversing for Optimal Sampling

Some considerations should be taken in order to increase the time performance.
For example rather than asking for a single sample si we can implement a single
recursive traversal algorithm which yields a set of n samples. Each node is visited
once at most, instead of visiting it n times as it would be the case when using
the basic approach we introduced.

First the algorithm starts by requesting n samples in the root node region
and proceeding recursively. Whenever a node with index i is visited, the program
must produce t random samples in Ri. If the i-th node is a leaf, those t samples
are obtained by rejection sampling. When i-th node is an inner node, a partition
of t is done, selecting four random integer values mi,0, . . . ,mi,3, which hold
mi,0 +mi,1 +mi,2 +mi,3 = t and in such a way that the average value of mi,j is
n IC(i,j) / Ii. Then the algorithm is recursively called for each j-th child C(i, j) of
i-th node (this is not done if mi,j = 0), and as a result we obtain four sets with
t samples in total. These four sets can be joined in one, which is the resulting
set of t samples. Each leaf node j contains nIi/I0 samples on the average, as
required by importance sampling.

3.4 Quadtree Set Construction Requirements

It was mentioned previously that our algorithm involves some computations in
order to closely represent any BRDF function. Table 1 shows information related
to the cost in seconds of the pre-computation for a given number of quadtree
structures and varying incident angle directions. Once we have these structures
on memory, they are used to estimate radiance. The values that are listed in the
table correspond to the pre-computation of 90 quadtrees, which is high enough
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Table 1. Quadtree creation times for each BRDF model for Adaptive method compare
with factorization and pre-computation times of Factored PDF. Memory requirements
for both methods are also given. Data is relative to the glossy scene.

BRDF
Adaptive Factorized

(sec) (KB) (sec) (KB)

Ashikhmin 51.4 6.25 82.9 1031

BeardMax. 15.5 1713.25 17.3 6454

Blinn 8.7 582.25 83.7 6481

Coupled 22.6 6.25 22.2 1033

He 102.7 2407.25 75.1 1034

Lafortune 6.6 1275.25 53.2 6445

Lewis 6.9 1279.25 119.3 6445

Minnaert 7.3 1461.25 4.9 1031

Oren 10.5 6.25 8.5 1033

Phong 6.9 1279.25 9.2 6445

Poulin 35.5 297.25 5.4 1038

SchlickD 19.1 342.25 77.9 1033

SchlickS 13.2 780.25 26.5 1043

Strauss 10.9 727.25 59.3 1052

Torrance 8.3 631.25 122.0 1029

Ward 20.7 483.25 51.3 1038

Table 2. Memory in KBytes for a single quadtree with varying parameters.

nmax

Depth 1.3 2 2.5 3

4 12.47 6.93 4.67 3.76

5 29.55 14.54 10.46 8.4

6 68.29 32.34 23.53 18.61

7 150.52 67.55 46.49 32.85

to ensure a structure is available very close to any incident direction. Average
value is 20.71 seconds compared with 51.27, the cost of factorized computation
and pre-computation of CDFs for sampling by using Lawrence’s technique.

Another issue concerning the requirements of our method is memory con-
sumption. Let us consider firstly our basic algorithm with no optimizations. A
single quadtree represents the unit disc domain as node regions given an inci-
dent direction. Its depth, and so its memory, depends on the nmax parameter
(see equation 6). Table 2 shows the cost of a single quadtree at incidence direc-
tion when the maximum depth is fixed and the value of nmax varies. We found
the optimal value of nmax = 2 and we used it in the quadtrees calculated and
stored for the Dragon scene. Table 1 shows the cost in KB of these 90 quadtrees
for each BRDF. The average value of our method is 0.81 MB compared with
2.67 MB of the factorized BRDF.
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4 Results

In this section we provide results for our adaptive sampling method for various
reflectance models, and we compare the computing time and average relative
error we obtain for several images under different sampling strategies (PDFs):
(1) uniform sampling technique, (2) cosine lobe sampling on S2 and Ω, (3)
Lawrence’s factorization [14] and (4) the proposed adaptive method. All the
images were rendered using a naive path tracing algorithm in a Linux machine
with an AMD64 processor and 2GB of RAM.

The maximum quality (10002 samples) has been used to produce a reference
image. We assign to each image a relative error value, computed with respect to
this reference image. We average the relative error for all pixels with non-null
radiance in the reference image and report it as a percentage.

4.1 Sampling Analytical BRDF Models

Glossy Sphere Considering a sphere object lit by a single area light, we focused
our measures on the portion of the image containing the highlight on the sphere,
because in that portion is where efficiency of different sampling approaches differs
the most.

Each PDF model, with exception of uniform sampling and our method, is
assigned a set of manually adjusted parameters in order to match the target
BRDF. For example, a cosine-lobe based PDF uses an exponent parameter n.
This value could be taken from the corresponding exponent in the BRDF in
use, however, there is no information to set the PDFs exponent if we sample a
BRDF model which does not depend on that parameter, thus a constant must
be used. To make comparisons fairer we have manually found the exponent that
yields the best match between the lobe-based PDF and each BRDF function.
Even for Phong-based BRDFs, the best n for the PDF can be different to the
BRDFs exponent. This is because both the PDF and the BRDF include the term
(wo · wi)n, however the BRDF also includes the cosine term (wi · n) whereas
the PDF does not.

For the Factored PDF we have found the best factorization. It is necessary to
find seven values for each BRDF. Parameters are: Nθwo

×Nφwo
and Nθp ×Nφp

for matrix size, J×K for the numbers of lobes that approximates the BRDF and
whether or not to use the half-angle reparametrization. Best values are found
comparing the average original matrix value with the average from the product
of factors.

To compare the various PDF functions we plot the sampling time obtained
vs. non-null pixel averaged relative error. By considering this, we can select the
best method as the one that gives less error for a given time. The results are
plotted in Figure 2. Numerical data is given in Table 3.

As the graph shows, the plot of our method is in most cases below the others.
This means that, with same time our sampling performed best and also with
same error our method needs less time. The adaptive method can not only be
used with any isotropic BRDF but it also does not need manual selection of
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Fig. 2. PDF comparative for Sphere scene. Manual selection of the cosine lobe exponent
is needed, as well as the best factorization has to be found.

Table 3. Relative error and average sampling time in seconds for each PDF and test
scene when 502 samples are taken compared to the 10002 sample reference image.

error time

Uniform 5.82% 0.03792

C.Lobe S2 2.39% 0.28328

C.Lobe Ω 2.24% 0.35734

Adaptive 2.13% 0.20032

Factored 3.19% 0.2986

parameters, and it requires no knowledge of the BRDF. It just requires the
ability to evaluate the BRDF.

A Scene with many BRDFs In this point we treat on the Dragon model
from the Stanford University. 2 The reflectance function used in this scene cor-
responds to Oren’s [19] with a rough value of 0.83, and a Strauss instance [24]
mostly smooth for floor and wall respectively. The dragon itself has a Lafortune
BRDF [13] with exponent n = 20. With this mixture of BRDFs, visually we can
compare our sampling method with uniform sampling, cosine lobe in Ω, and the
Factored representation of Lawrence, with manually adjusted parametrization
to fit the shape of each BRDF instance. You can see in Figure 3 that with only
100 samples, our algorithm gives results with less noise than the others, and
without the need to manually set the parameters for each BRDF.

4.2 Adaptive Sampling of Measured Data

Sampling by inversion of the CDF is a common technique for sampling tabular
data such as the BRDF from Merl database. The Uniform Cascade CDF [15] is
2 The 3D Scanning Repository at<http://graphics.stanford.edu/data/3Dscanrep/>
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Fig. 3. From left to right, images corresponding to uniform PDF, adjusted cosine-lobe
strategy in Ω, the Factored representation of the BRDF and finally our algorithm
sampling. Adaptive Disc shows less noise using the same number of samples than the
others. The resolution is 400 x 400 pixels. Following the same order, sampling time is:
9.232, 114.735, 90.028 and 133.172 seconds respectively.

an approximate method which uses a resolution of 32 × 16 × 256 × 32. This
implies significantly more storage requirements than the BRDF itself (as shown
in Figure 4) and becomes prohibitive in scenes with many BRDF instances.
The compression of the CDF tables by Lawrence [15] lets us use this method
without so much memory penalization. The CDF curve is approximated and the
resulting CDF table is much smaller, allowing fast sampling by the binary search
procedure. As could be seen in Figure 4 the compression step is time consuming.

Fig. 4. When sampling measured data our algorithm imposes no penalty with the
precomputation.

The Adaptive Disc sampling using the precomputation of 60 quadtrees do not
need as much time as the compressed Cascade CDF nor do we require so much
memory (an average of 445.33 KB) as the the uniform and even, the compressed
CDF tables. On the other hand we use more sampling time to deliver 52 samples
that best contribute to the estimator (see Figure 5). Numerical data relative to
the sampling is given in Table 4.
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Table 4. Sampling times in seconds for a subset of the Merl database using many
PDFs.

Merl BRDF Uniform UnifCDF CompCDF Adap.Disc

alum-bronze 0.35 2.20 1.15 16.03
alumina-oxide 0.35 2.31 0.91 16.29
beige-fabric 0.34 4.01 0.94 4.04
blue-metallic-paint2 0.37 1.97 1.11 50.55
blue-metallic-paint 0.35 2.20 1.11 4.60
nickel 0.37 1.87 1.13 12.31
red-plastic 0.37 2.59 0.98 4.31
teflon 0.34 2.47 0.93 4.25
violet-acrylic 0.34 2.19 1.13 38.86
white-marble 0.34 2.31 0.97 12.54
yellow-paint 0.34 2.37 0.91 3.86

Average 0.35 2.41 1.02 15.24

Fig. 5. Image of 450 × 220 resolution with 25 samples. Left image use Compress Cascade
CDF and right image use our Adaptive Disc PDF.

5 Conclusion

We have presented a sampling method based on an adaptive and few parameter
algorithm which implements a PDF exactly proportional to an arbitrary BRDF.
Reflected directions were sampled using importance sampling of the BRDF times
the cosine term which is preferable to only sampling the BRDF. The method can
be used for numerical Monte-Carlo based integration in global illumination or
in other contexts. Its efficiency is similar or even better than standard sampling
methods with manually selected optimal parameter values.

We also tested our adaptive sampling method with tabulated BRDF repre-
sentations [17] since they can be evaluated. We further plan to develop, as future
work, a method to acquire BRDF data from an inexpensive 3D scanner, as a way
to deal with real world materials and anisotropic measures. A more optimized
method will use an area-preserving spherical mapping.
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