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Abstract
The ray-scene intersection test is the most costly process when a scene is rendered. This process may be improved
using any strategy to be able to speed-up it. Generally, any strategy used is based on the building of a spatial
indexing in the scene domain or in the rays domain. However, there is no theory to formalize these techniques.
In this paper, an acceleration techniques formalization is proposed. This formalization allows an optimizer to be
specified according to the spatial index used. Furthermore, a formalization of optimizer composition is presented.
Finally, we present an expression which allows to compare several optimizers, and select the one with best per-
formances. This formalization is based on the graphics objects theory and claims to be a generalization to all
optimizers which use spatial indexing.

Keywords: Graphics object theory, spatial indexing, ray
casting, acceleration techniques.

1. Introduction

Usually the programs based on ray tracing include acceler-
ation techniques in order to improve the ray-scene intersec-
tion test. Several works have been proposed on this subject.
Glassner10, Fujimoto and Iwata8 presented techniques based
on both uniform and non-uniform spatial subdivision, using
a regular 3D grid and an octree respectively. Both strategies
are based on subdivision of a 3D region which includes the
whole scene. In these techniques it is necessary to design an
algorithm for computing the intersection between a ray and
the spatial structure.

Arvo and Kirk3 proposed another technique called
"ray classification". It consists of partitioning the five-
dimensional space of rays into small regions which are en-
coded as 5D hypercubes. Each hypercube is associated with
a list of scene objects that are totally or partially inside.

Haines and Greenberg13 proposed a strategy to improve
the shadow test, via the light buffer. This technique is only
used in ray tracing for spot or directional light sources.

Based on the above techniques, some effort has been de-
voted to develop new algorithms to traverse spatial indexing
schemes. In order to improve the traversing process using
a regular 3D grid, several works were proposed1, 8, 7. Other
papers were presented describing improvements to the basic
octree traversal algorithm5, 7, 9, 15, 17, 20.

There are also available techniques which employ other
schemes such as the hierarchical bounding volumes16, 12 and
binary trees22.

As it has been mentioned above, a lot of effort has been
employed in the development of efficient solutions to the
problem of ray-scene intersection test. However, there is no
theory that formalizes the behavior of a generic optimizer.

In this paper we propose an abstract model of a generic
optimizer as a function which selects a set of candidate ob-
jects for a given scene and a given ray. We also propose a
model of optimizer based on spatial indexing and two strate-
gies to obtain new optimizers by composing other optimiz-
ers.

The paper is organized as follows: In section 2 several
concepts, definitions, and notations are given. In section 3,
an abstract characterization of a strict optimizer and an opti-
mizer are presented. Section 4 presents several compositions
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of optimizers, and the recursive optimizers are presented. In
section 5, an efficiency measurement is proposed. Finally we
include our conclusions and planned future work.

2. Concepts, Definitions and Notations

We focus on optimizers that improve the ray-object inter-
section test using a spatial index scheme. This scheme is a
representation of the spatial distribution of scene objects. It
is composed of a set of voxels, which will be called herevo-
lumetric objects. Each volumetric object contains informa-
tion of a subset of scene objects, which are contained in it.
The ray-object intersection test performs the test with each
volumetric object and returns a list of scene objects.

To formalize the optimizer behavior, we use the graphic
objects theory23, 24.

2.1. Graphic Object Theory

A graphic objecto is a pair(µ,α), in which: µ is a function
called presence function defined asµ :R3→ P, whereP is a
presence domain, andα is a function called aspect function
with domain inR3 and range inT, whereT is called aspect
domain.

We adopt as presence domain a subset ofR, more con-
cretely,P = {0,1} ⊆ R. Using this presence domain, a gra-
phic object is equivalent to an arbitrary set of points in space.

The aspect domainT is not defined because it is not nec-
essary in the current framework. We only need the spatial
region occupied by a graphic object.

The set of all graphic objects is denoted byO.

For each graphic objecto∈O, we define the spatial region
Vol(o)⊆ R3 as the set of all pointsp∈ R3 such thatµ(p) =
1. Formally it is:

∀o∈ O, Vol(o) = {p∈ R3 | µ(p) = 1} (1)

whereµ is the presence function ofo

The null or empty graphic object, denoted byφ, is the
unique graphic object satisfying the following property

∀p∈ R3 µ(p) = 0

whereφ = (µ,α). This graphic object fulfils Vol(φ) = Φ
(Φ denotes the empty set of points).

The presence domain (that is, the setP = {0,1}), satisfies
the properties of a boolean algebra. This presence domain in-
cludes operators such as theunion (∨), the intersection(∧),
and thecomplement(∼). For any pair of valuesa,b∈ {0,1}
the following expressions are fulfilled:

a∨b = Max(a,b)

a∧b = Min(a,b)

∼ a = 1−a

where Min and Max have the usual meaning. Thereupon,
the set of graphic objectsO inherits this boolean algebra
structure.

The union of two graphic objects,o1 = (µ1,α1) ando2 =
(µ2,α2), is an objecto = (µ,α) whose presence functionµ
satisfies the following expression:

∀p∈ R3 µ(p) = µ1(p)∨µ2(p) (2)

The graphic objecto can be written aso1∪o2.

The intersection of two graphic objects,o1 = (µ1,α1) and
o2 = (µ2,α2), is an objecto = (µ,α) whose presence func-
tion µ satisfies the following expression:

∀p∈ R3 µ(p) = µ1(p)∧µ2(p) (3)

The graphic objecto can be written aso1∩o2.

For any graphic objecto1 = (µ1,φ1) its complement is a
graphic objecto = (µ,α) such that:

∀p∈ R3 µ(p) =∼ µ1(p) (4)

The graphic objecto will be written as∼ o1

3. Optimizer Abstract Characterization

3.1. Rays

When a optimizer is used into a rendering system, its behav-
ior can be understood as a function which returns a subset of
candidate objects for a given ray and a scene. The number of
returned scene objects must be lesser than the number of ob-
jects in the scene, in order to reduce the number of ray-object
intersection tests.

We can define a ray as a graphic object. A rayr is a gra-
phic object(µ,α) such that exists a unique pointq∈R3, and
a unique direction vectoru∈∇ such that:

∀ p∈R3 µ(p) =
{

1 if ∃ t ∈ R+ | p = q+ tu
0 otherwise

(5)

whereR+ ⊆ R is the subset of real values strictly greater
than zero, and∇ is the set of unit length vectors inR3. The
point q is theorigin of the ray, and the vectoru is thedirec-
tion of the ray. Every ray has associated a unique origin and
a unique directional vector.

From the above definition, we deduce that the volume of a
ray is an infinite half-line inR3. The set of all rays is denoted
byR.

A ray and a graphic object may have some points in com-
mon, that is, they mayintersect. When this happens, we can
measure the distance from the origin to the nearest common
point, and this will be a positive real value. When no inter-
section occurs, we say that this distance isinfinite.

In order to formalize this concept, we define the setR∗
asR∗ = R∪{∞}, where∞ is any element that it is not in-
cluded inR. This value is used to denote a infinity distance.
By definition, any valuex∈ R holdsx <∞.
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3.2. Intersecting Rays and Objects

Let r ∈ R, be a ray, and leto ∈ O be a graphic object, we
defineS(r,o) as follows:

S(r,o) = { t ∈ R | µ(q+ tu) = 1 } (6)

whereµ is the presence function ofo, q is the origin ofr, and
u is the direction vector ofr. WhenS(r,o) 6= Φ, an intersec-
tion occurs between the ray and this graphic object. When
S(r,o) = Φ no intersection occurs.

FunctionS returns the set of distances from the origin to
all points in the ray which belongs also to the volume of the
object. In fact, we only need the lowest one of these real
values.

We define the functionI with the same domain ofS and
values inR∗. For eachr ∈ R, ando∈ O it holds:

I(r,o) =
{

inf(S(r,o)) if S(r,o) 6= Φ
∞ if S(r,o) = Φ (7)

whereinf denotes theinfimumof a set of real values, which
is always defined even for graphics object whose volume is
not a closed region.

The main interest of the above definitions consists of de-
termining which graphic objects in a given scene are inter-
sected by a given ray.

In what follows, we will use the symbolS to mean the set
of all scenes.

3.3. Objects Intersected by a Ray

Let r ∈R be a ray, and lets∈ S be a scene, we defineC(r,s)
as the set of graphic objects intersected byr, as follows:

C(r,s) = { o∈ s | I(r,o) 6=∞ } (8)

C(r,s) will contain the graphic objects ins intersected byr.
Therefore, the conditionC(r,s)⊆ s holds.

We also want to know the nearest intersected graphic ob-
jects with respect to the ray origin. Letr ∈ R be a ray, and
let s∈ S be a scene, we defineCn(r,s) as the set of nearest
graphic objects intersected byr as follows:

Cn(r,s) = {o∈ s | I(r,o) 6=∞
∧ @o′ ∈ s | I(r,o′) < I(r,o)} (9)

The expressionCn(r,s)⊆ s is also satisfied.

3.4. Strict Optimizer

An optimizer reduces the number of candidate objects for
the intersection test. Obviously when a reduced set of scene
objects is obtained, we get an improvement in terms of exe-
cution time.

Let A be a function with domain inR×S and values in

S. A is a strict optimizer if and only if it fulfils the following
condition:

∀r ∈R, ∀s∈ S, C(r,s) ⊆ A(r,s) ⊆ s (10)

In other words, a strict optimizer selects a subset of the
scene objects. The optimizerA yields a set of objects inter-
sected by a ray, and possibly, other objects which are not in-
tersected. The best optimizer is one which holdsC(r,s) =
A(r,s), whereas the worse optimizer is one which always
holdsA(r,s) = s, that is, it always yields the whole scene.

3.5. Optimizer

There are applications where we only need the nearest object
intersected by a ray (or the nearest objects, because it may
happen that there are more than one at minimum intersection
distance). In order to model this requirement we introduce
the definition of an optimizer. An optimizer is a function of
the same class that a strict optimizer. However the condition
we impose to the set of returned objects is weaker, and thus
the class of optimizers contains the class of strict optimizers.

Let A+ be a function with domain inR×S and values
in S. A+ is an optimizer if and only if fulfils the following
condition:

∀r ∈R, ∀s∈ S, Cn(r,s) ⊆ A+(r,s) ⊆ s (11)

It is easy to prove that any strict optimizer is an optimizer
by using the relationCn(r,s)⊆C(r,s) which always holds.

3.6. Spatial Representation

A spatial representation, from now on SR, is a set of graphic
objects. These graphic objects will be calledvolumetric ob-
jectsor voxels. The set of all possible spatial representations
will be calledE . When the only difference between two spa-
tial representations is consists in their aspect functions, we
consider both spatial representations equivalent.

Let mbe a function with domain inS and values inE , this
functionm is aspatial indexing method(from now on SIM)
if and only if for any given scenes = {o1,o2, . . . ,on} and
any given SRe = {v1,v2, . . . ,vn} the following equality is
satisfied:

n[
i=1

oi ⊆
m[

j=1

v j (12)

This set of graphic objects is usually simpler than the
original scene, in the sense that the ray object intersection
test can be done faster for volumetric objects than for orig-
inal scene objects. This property is essential for ray casting
speed-up, because we can intersect the ray with volumetric
objects and discard the scene objects which are included in
volumetric objects not intersected by the ray.

In order to determine the ray-scene intersection test, a
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function to obtain the intersection between a ray and a SR
must be defined.

Let r ∈R be a ray, lets∈ S be a scene, and lete∈ E be a
SR, we consider that when an intersection occurs between an
objecto∈ s and a volumetric object, this volumetric object
is also intersected by the rayr.

This set is noted asΨ(r,s,e). This set is more formally
defined as follows:

Ψ(r,s,e) = {o∈ s | ∃v∈ e/ v∩o 6= φ ∧ v∩ r 6= φ} (13)

Obviously,Ψ(r,s,e)⊆ s is always satisfied.

3.7. Optimizer Based On Spatial Indexing

There are many different classes of optimizers. Our attention
will be focused on a sub-type or category. This sub-type will
be calledoptimizers based on spatial indexing.

Let A be an optimizer.A is an optimizer based on spatial
indexing if and only if the following property is fulfilled:

∃! m∈M / ∀s∈ S , r ∈R , A(r,s) = Ψ(r,s,m(s)) (14)

Note that for each optimizer based on spatial indexing, there
is a unique SIM associated to it (as can be deduced from the
above condition).

When an optimizer of this category is implemented, one
SIM must be implemented as well. That is, the necessary
algorithm to buildm(s) must be designed and implemented.
Normally, a data structure residing in memory for the SR
m(s) must be created.

After that it is possible to process a wide set of rays. For
each one ray we must compute which voxels are intersected.
From this set of voxels we obtain the set of objects intersect-
ing them. The functionΨ models this algorithm.

4. Composing Optimizers

When an optimizer is used the main goal is to obtain an ef-
ficient SR. That is, for a given scene, an optimizer must be
selected having into account the objects distribution in the
scene. Due to scene complexity, it is not always easy to se-
lect the most appropriated optimizer. In this case, it would
be interesting to make a partition of the scene. Each partition
can be processed by using a different optimizer. In short, we
have several optimizers applied to one single scene.

This problem was called by Glassner asthe problem of a
teapot inside a stadium. That is, a very complex and rela-
tively small set of objects inside a very simple and big one.
In these cases, the available spatial representations were not
as fast as expected. A possible solution was to consider some
strategy to compose two o more different spatial representa-
tions, as was pointed out in11 as future efforts.

The main goal is to determine which optimizers are ap-
propriated to use for a given scene4, 2.

In cases for which it is not easy to find the optimizer which
has the best performances, we propose two ways to compose
optimizers:

• Sequential: This is very useful when, for a given scene,
several optimizers will have better performances than a
unique optimizer. From an initial SIM, the SR is built. In
those voxels with a relatively great number of objects, a
secondary SR is applied.

• Parallel: We can use this when, for a given scene, there is
uncertainty or doubt to determine the best optimizer. The
main goal is to execute in parallel or concurrently several
optimizers (simple or composed sequentially). For each
ray and each optimizer, a subset of intersected objects are
returned. The final result is the intersection of all objects
subset.

In the following sections, the above described optimizers
are formally defined.

4.1. Sequential Composition

As it was mentioned in the previous section, the main goal is
to separate the complex scene into simpler subscenes. With
this purpose in mind, a new optimizer may be applied for
each volumetric objectv∈m(s).

We will define the sequential composition as follows:

Let A1 be an optimizer based on spatial indexing, letm
be associated toA1, and letA2 be any optimizer. For any
ray r ∈ R and any scenes∈ S, the result obtained whenm
is applied tos is a spatial representationm(s) including n
volumetric objects or voxels as follows:

m(s) = {v1,v2, . . . ,vn} (15)

In these conditions, we say thatAσ is the sequential compo-
sition of A1 andA2 (noted asAσ = A1 | A2) if and only if
theAσ is an optimizer which holds the following condition:

Aσ(r,s) =
n[

i=1

A2(r,ei) (16)

whereei is the subscene ofs including objects which inter-
sectvi , that is:

ei = {o∈ s | o∩vi 6= φ} (17)

It is easy to prove that the sequential composition is not com-
mutative nor associative in general.

However, whenA2 is also an optimizer based on spatial
indexing then the following two conditions hold:

• A1 | A2 is an optimizer based on spatial indexing.
• For any optimizerA3, it holds that

A1 | (A2 | A3) = (A1 | A2) | A3 (18)

This formalism can be used to obtain formal models of
several optimizers previously proposed by several authors
18, 19, 14, 4, 2, 21, 6.
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Octree

Grid

Figure 1: An example of sequential composition.

One example for a sequential composition is shown at fig-
ure 1. This figure shows us a composition of an octree and a
3D grid.

4.2. Parallel Composition

When we have a complex scene and no optimizer is known
as the best one to reduce the cost in terms of execution time,
a parallel composition is very useful. This implies the con-
currently or parallel execution of two or more optimizers.
We will define the parallel composition of two optimizers as
follows:

Let A1 andA2 be two optimizers, letr ∈R be a ray, and let
s∈ S be a scene, We say thatAπ is the parallel composition
of A1 andA2 (noted asAπ = A1 ‖ A2) if and only if Aπ is
the optimizer which fulfils the following condition:

Aπ(r,s) = A1(r,s) ∩ A2(r,s) (19)

An example of a parallel composition is shown at figure 2.
Here we show two optimizers based on spatial indexing. The
first one is based on a 3D Grid (AG), and the second is based
on an Octree (AO). This figure shows us thatAO returns less
objects thanAG. That is:

Card(AG(r,s)) > Card(AO(r,s))

In this case, the parallel composition is very useful because
a reduced number of objects is returned in a relatively great
number of rays for this scene.

4.3. Recursive Optimizers

There are many strategies available to build a SR based on
a hierarchical partitioning of the scene. An example of this
are the octrees10, 8, the binary trees22, the bounding volumes
hierarchy12. All these optimizers may be described asrecur-
sive optimizers.

Octree

Regular 3D Grid

Figure 2: An example of parallel composition.

This definition is very connected with the recursion con-
cept and the sequential composition. With these premises, a
recursive optimizer can be defined as follows:

Let A be an optimizer based on spatial indexing, letB be
also other optimizer based on spatial indexing.A is a recur-
sive optimizer if and only if it satisfies:

A = B | A (20)

An appropriated example of this group of optimizers is an
octree. An octree can be seen as a sequential composition of
regular grid (containing2×2×2 voxels) with itself.

5. An Optimization Efficiency Measurement

Using the above definitions and results, an optimization effi-
ciency measurement can be defined. This measurement con-
sists of computing the number of objects that an optimizer is
capable to reject for a set of rays and a given scene.

A way to get this measurement is to use a random distri-
bution of rays for a given optimizer, and for the whole scene,
and after this to compute the relative gain in efficiency. This
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computation can be formally expressed by introducing:

M(A+,s,P) =
Z

r∈R
Card(A+(s, r))

Card(s)
dP(r) (21)

whereCard is the function which returns the number of el-
ements which are in a set, andP(r) is a probability mea-
sure function which models the probability distribution of
the rays to be processed.

Probability measureP depends on the usage of the opti-
mizer in a rendering system, this is, different distributions of
rays can be obtained. For instance, when a simple ray casting
is applied, in most cases the rays start from the observer and
reach a particular surface point of the scene. However, when
other algorithm ray-based is applied, the rays may start from
the light sources.

6. Conclusions and Future Work

In this work, a formal model of optimizer is proposed. This
formal model is shown as a function that reduces the num-
ber of candidate objects for the ray-object intersection test.
Moreover, a model for optimizers based on spatial indexing
has been proposed.

Two formal models of composed optimizer have been pre-
sented: the sequential and parallel composition, in addition
to the recursive optimizers.

In this formalism, a measure function to study the per-
formances of any optimizer with respect to other one was
proposed.

As future work, we are planning to produce definitions of
concrete optimizers by applying this formal framework.

With respect to the efficiency measurement, we are also
planning to study this function. Normally, this is based on
a uniform distribution. In terms of implementation, we have
into account the rendering algorithm applied and a reduced
sample of the all rays is considered to obtain an approximate
estimation of this measure function. Obviously, from two gi-
ven optimizers and when this measure is known, one of these
optimizers will be more suitable than another.

In short, an optimizer will be better than another one when
it is capable to reduce the average number of candidate ob-
jects.

This measurement can be useful to select the best opti-
mizer. Notice that in this case, this measurement does not
take into account whether the optimizer is based on spatial
index or not. It only obtains the performance of an optimizer
with respect to a null optimizer. It will also allows to com-
pare the performances of two optimizers.
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