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Abstract Tree-based transmission-disequilibrium tests are valuable tools to
perform fine-mapping in the search of genetic factors for complex diseases, as
they use evolutionary information to relate haplotypes affecting the disease.
However, the number of different haplotype trees exponentially increases with
the number of markers used, leading to spurious associations due to sample
overfitting. If the usual Bonferroni correction is applied to avoid those spu-
rious associations, true risk variants may also be missed. In this work we
considered a different solution to avoid sample overfitting of haplotype trees.
It consists of dividing the data set into at least two parts and using one of
them to choose the haplotype tree which models the disease, and the other
one to assess the statistical significance. As a practical example to evaluate
the performance of our proposal, we modified the TreeDT algorithm and ob-
served a significant improvement in reproducibility while reducing the type I
errors.
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1 Introduction

Genome-Wide Association Studies (GWAS) are a first step currently per-
formed in the search of genetic mutations that increase susceptibility to com-
plex diseases. Fine-mapping is a second step that has to be performed af-
ter GWAS have found markers – usually Single-Nucleotide Polymorphisms
(SNPs) –, in association with a complex disease in the majority of the avail-
able genotype data sets. The first wide selection of candidate genes is usually
done by analysing their linkage disequilibrium with the actual susceptibility
disease gene, which may have not been sequenced [12] [9]. Fine-mapping can
shred more light on to where to find the exact location of that gene, or at
least narrow down the selection of candidates found in the first step, increas-
ing the chances of replicating the association found in a different data set
[4].

Perhaps the most sensible fine map is the one which considers relationships
among haplotypes, such as how they departure from each other because of
mutation and recombination. However, as fine maps cover small regions in
the genome, recombinations are usually ignored [10] and to infer a haplotype
tree representing how mutations took place in the population is a simple yet
powerful approach to perform fine mapping.

Several authors have explored this idea in order to extend the classic Trans-
mission/Disequilibrium Test (TDT) [12] for multiple markers. The basic bial-
lelic bimarker TDT only measures differences in transmission of one allele.
As the number of different markers increases, the number of different models,
defined by combining haplotypes, also increases and many generalizations of
the simple TDT may be defined, as those using haplotype trees. ET-TDT [10]
uses an unrooted evolutionary tree as the basis for grouping haplotypes. The
groups reduce the complexity of the model while capturing the information
of the genetic transmission. In Treescan [13], a haplotype tree is estimated
using maximum parsimony [5]. The clades of the tree are treated as simple
alleles, using the F-statistic from a standard one-way ANOVA to measure the
association. ALTree [1], which also uses parsimony to build a phylogeny from
the haplotypes, chooses a chi-square test as the statistical analysis method
and achieves an improvement when two susceptibility sites are involved. Dur-
rant et al. [4] proposed to create a cladogram using simple hierarchical group
averaging techniques based on a distance metric between haplotypes. Then
a logistic regression model is applied. In TreeDT [11], genealogical trees are
estimated to the left and right of the location of interest. The construction of
the tree is based on the prefixes shared by the haplotypes. All subtree sets,
up to a limited cardinality, are finally explored using a Z statistic.

All methods explained above can be broadly depicted in two steps. In the
first one, the tree explaining the evolution of haplotypes in the population is
inferred using the whole data set. In the second one, statistical significance is
computed, again, using the entire data set. This scenario leads to a common
problem: as the number of different trees exponentially increases with the
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number of markers, so it does the chance of sample overfitting due to the
fact of learning and testing the model on the same data set. If the number
of markers were very low, the problem could be ignored. Thus, in the very
extreme situation of only one biallelic marker there would be only one tree
with two subtrees, one for each allele, regardless of the algorithm used. In fact,
in that situation, the solution would be equivalent to the TDT. The above
mentioned sample overfitting is the reason why these methods are hardly
reproducible, and only associations found involving one or two markers may
be confirmed in different data sets [3].

We propose a new approach in sample testing which benefits from the
higher power that larger haplotypes usually achieve, but without detecting
spurious associations due to sample overfitting. To do that we chose TreeDT
[11] and defined treeDT-holdout (TreeDTh) based on it. Under the holdout
approach two data sets are used, one for training and other for testing. We
performed simulations under a wide range of genetic scenarios and observed a
remarkable reduction in spurious associations, therefore showing a significant
higher reproducibility.

2 TreeDTh

Our work in this paper focused on improving test reproducibility of tree-
based TDTs. Our proposal divides the process of finding a disease variant
into two independent parts. The first one deals with the creation of the trees,
in the exact same manner as the original version and will be explained in
section 2.1. The second part uses a new data set to infer a model based
on the information gathered in the first phase (section 2.2). For the whole
process to take place, we need two data sets, which we create by splitting the
original data set into two subsets: S1 and S2.

2.1 Phase 1. Creating the best model

TreeDTh creates two trees for each location using S1, one for the left and one
for the right. A location is the potential disease susceptibility locus between
two markers. For each left and right tree all possible subtrees are obtained.
Then the subtrees are grouped in all possible sets of size one to three. The
best set for each side (right and left) is then stored as the best model for that
location, considering the best set the one minimizing the p value. Finally
the best model is the one corresponding to the location which minimizes the
p value between all the locations, which will be considered as the reference
location.
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2.2 Phase 2. Assessing model performance

To avoid overfitting, the model is updated using the second data set S2. Its
structure will remain the same, but the counts of the haplotypes in the sets
will be updated with the new data. For each haplotype h1 in the model built
using S1 the most similar haplotype in S2 is found, h2. Then the counts of
h1 are updated with the counts of h2. As the similarity measure, we used
the length measure [14], which computes the largest number of consecutive
matching alleles. The starting marker for the comparison between two hap-
lotypes will be determined by the reference location. The direction of the
comparison will be left and right depending on the set we are updating. As a
simple example, we can consider two haplotypes of length 6, ha = 000000 and
hb = 100010. Now, assuming that the reference location is situated between
the third and the fourth markers we come up with two possible comparisons.
For the right direction, positions 4 to 6 are compared. The first difference is
found at marker 5 and so, markers 5 to 6 are considered different. The dis-
tance for the markers on the right is therefore 2. For the left direction markers
3 to 1 are compared. The first difference is found at marker 1. The distance
for the markers on the left is then 1. Once the frequencies are updated in the
model, it is possible to calculate new p values using the new frequencies. Since
the corresponding distributions were calculated and stored in the phase 1, it
is sufficient to calculate the appropriate statistics and compare them with
the distributions.

3 Data sets

We generated SNP data sets of nuclear families (the parents and a child) to
test the performance of our proposal under different criteria: type I errors
under population stratification and admixture, power and locus specificity.
We used msHOT [6] to draw 1000 realistic populations to test type-I errors
and another 100 to test power (it uses the standard of coalescent model with
recombination). From these populations, each with 500 family trios, we used
trioSample [7] to obtain samples from populations under different criteria as
explained above. A more detailed justification of how data sets were generated
is explained at the supplementary website (http://bios.ugr.es/treedth).
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3.1 Data sets to test population stratification and
admixture

We used the same approach considered in several previous works to test
population stratification and admixture [16, 15, 7]. Populations were paired
so that frequencies of disease alleles were 0.2 and 0.3 for each population at
a pair, and minor allele frequencies (MAFs) were 0.5 for the first population
and it was parameterizable for the second population: q ∈ {0.1, 0.3, 0.5}. From
each pair, we generated 9 different data sets with 500 trios, by combining two
variables affecting population stratification and admixture: q, the MAF for
the second population at each pair, and pp, the proportion of individuals
used from the first population of each pair, pp ∈ {0.5, 0.25, 0.17}, so that the
remaining number of trios up to 500 were chosen from the second population.

3.2 Data sets to test power and locus specificity

Our approach has been previously proposed [7] as a modification from older
approaches [16, 15] to allow testing locus specificity and to obtain more real-
istic data sets to test power by using the coalescent model with recombination
to draw populations [6]. Therefore, once populations were generated, one or
two disease loci were selected (MAF had to be in the interval [0.2− 0.4]) and
three (additive, dominant, recessive) / six (additive, dom-and-dom, rec-or-
rec, dom-or-dom, threshold and modified) genetic models were respectively
chosen. Relative risk RR, the probability rate of having the disease when dis-
ease alleles are carried or not, was also considered as a variable to compare
results: RR = {1.2, 1.6, 2.0, 2.4, 2.8}. A set of consecutive SNPs surrounding
one disease locus (recombination θ = 0) was used as markers to compute the
statistic and different number of SNPs were considered: {1, 2, 4, 6, 8, 10}.

To test locus specificity, SNP markers were chosen at different recombina-
tion fractions (genetic linkage) from one disease locus: 5e−05, 0.0001, 0.00015
and 0.0002.

4 Results

4.1 Population stratification and admixture

Once a tree is constructed from a group of haplotypes, the different subtrees
generated are a meaningful way of grouping haplotypes. The complexity of
the tree, and hence the number of subtrees, increases with the number of
markers used. Since TreeDT explores all possible subtrees, the problem of
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multiple testing must be addressed. The solution proposed in the original
algorithm is to use the minP method of Westfall and Young [8], but our
experiments have proved it not to be enough, as the number of false positives
(type I error) is higher than it should be expected by chance. For example, the
proportion of associations found in 1000 executions for data sets generated
with parameters q = 0.3 and pp = 0.75 using an α nominal value to reject the
hypothesis of 0.001 was 0.001 in the case of TreeDTh and 0.027 in the case of
TreeDT. The meaning of this result is that TreeDT generates false positives,
casting doubt on the reliability of its power. Our approach in TreeDTh solves
this problem. Tables 1 and 2 at the supplementary website contain the results
for data sets simulating different situations of population stratification and
admixture under the conditions of the null hypothesis.

4.2 Power, locus specificity and reproducibility

Both methods reached similar power when a small number of markers was
used, as the model created was quite simple. Figures S1, S7 and S13 at
the supplementary website show how power (association at recombination
fraction θ = 0) is practically the same for TreeDT and TreeDTh. However,
TreeDT (red line) continued to detect association even when the distance to
the disease susceptibility locus was increased. In contrast, TreeDTh (green
line) rapidly dropped association rates as we moved away from the disease
susceptibility locus and it reached the nominal α value when testing markers
not in linkage with the disease locus. The more markers were used, the more
complex the model became and consequently the risk of sample overfitting
increased. It is in this scenario that the differences between both methods
became more apparent, but it has to be noted that association rates reached
by TreeDT at θ = 0 are due not only to power, but also to false positives
originated by model overfitting (see supplementary figures S6, S12 and S18
for window size 10 and different genetic models). Therefore, a better way to
measure the ability of the tests to detect association is to check its behaviour
in a different data set, that is, its reproducibility. The associations found by
our method are practically always confirmed whereas the ones found with
the original method are not. Figure 1 shows the proportion of associations
confirmed in a second data set by both methods. Figures S19 to S36 for
the remaining haplotype lengths, relative risks and genetic models can be
accessed at the supplementary website.
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Fig. 1 Comparison of the reproducibility of TreeDT (red line) versus TreeDTh (green).
One locus recessive genetic model, window size 10 and relative risk 2.0.

5 Conclusions

Organizing haplotypes into complex structures like trees based on their ge-
netic information is a very powerful approach to fine mapping. However, the
problem of multiple testing because of the huge number of different trees com-
promises test reproducibility as the model usually overfits to the data used to
infer it. The problem of multiple testing and therefore sample overfitting in-
creases with the number of markers used, as a consequence of the raise in the
number of different models and their complexity. The result is an increment
in association rates which can be explained by two factors: (1) an increase
in power because more markers in linkage with the susceptibility locus may
better capture association [2, 15, 7] and (2) sample overfitting in which case
associations found are not verified on a new data set. However, with our ap-
proach, we control sample overfitting so that increases in association rates
are only a consequence of truly genetic factors, i.e., power. Therefore, in this
paper we have proposed a way to obtain a powerful test without compro-
mising its reproducibility. The TreeDTh idea can be extended to other tree
based algorithms. Moreover, instead of the holdout approach, multisample
techniques such as cross validation may be used to avoid overfitting.

Web resources

A supplementary website has been created for this work at http://bios.ugr.es/treedth,
where Figures S1-S36, Tables T1-T2, the software trioSample used to obtain
data sets upon which to perform simulations (scripts for linux and software
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in c++) and TreeDTh, the software used to implement the method, are avail-
able.
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