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Abstract. The two-layer shallow water system is used as the numeri-
cal model to simulate several phenomena related to geophysical flows
such as the steady exchange of two different water flows, as occurs in
the Strait of Gibraltar, or the tsunamis generated by underwater land-
slides. The numerical solution of this model for realistic domains imposes
great demands of computing power and modern Graphics Processing
Units (GPUs) have demonstrated to be a powerful accelerator for this
kind of computationally intensive simulations. This work describes an
accelerated implementation of a first order well-balanced finite volume
scheme for 2D two-layer shallow water systems using GPUs supporting
the CUDA (Compute Unified Device Architecture) programming model
and double precision arithmetic. This implementation uses the CUDA
framewok to exploit efficiently the potential fine-grain data parallelism
of the numerical algorithm. Two versions of the GPU solver are imple-
mented and studied: one using both single and double precision, and
another using only double precision. Numerical experiments show the
efficiency of this CUDA solver on several GPUs and a comparison with
an efficient multicore CPU implementation of the solver is also reported.

1 Introduction

The two-layer shallow water system of partial differential equations governs the
flow of two superposed shallow layers of immiscible fluids with different constant
densities. This mathematical model is used as the numerical model to simulate
several phenomena related to stratified geophysical flows such as the steady
exchange of two different water flows, as occurs in the Strait of Gibraltar [4], or
the tsunamis generated by underwater landslides [14]. The numerical resolution
of two-layer or multilayer shallow water systems has been object of an intense
research during the last years: see for instance [1–4, 14].

The numerical solution of these equations in realistic applications, where big
domains are simulated in space and time, is computationally very expensive.
This fact and the degree of parallelism which these numerical schemes exhibit
suggest the design of parallel versions of the schemes for parallel machines in
order to solve and analyze these problems in reasonable execution times. In
this paper, we tackle the acceleration of a finite volume numerical scheme to
solve two-layer shallow water systems. This scheme has been parallelized and



optimized by combining a distributed implementation which runs on a PC cluster
[3] with the use of SSE-optimized routines [5]. However, despite of the important
performance improvements, a greater reduction of the runtimes is necessary.

A cost effective way of obtaining a substantially higher performance in these
applications consists in using the modern Graphics Processor Units (GPUs).
The use of these devices to accelerate computationally intensive tasks is growing
in popularity among the scientific and engineering community [12, 15]. Modern
GPUs present a massively parallel architecture which includes hundreds of proce-
ssing units optimized for performing floating point operations and multithreaded
execution. These architectures make it possible to obtain performances that are
orders of magnitude faster than a standard CPU at a very affordable price.

There are previous proposals to port finite volume one-layer shallow water
solvers to GPUs by using a graphics-specific programming language [10, 11].
These solvers obtain considerable speedups to simulate one-layer shallow water
systems but their graphics-based design is not easy to understand and maintain.

Recently, NVIDIA has developed the CUDA programming toolkit [8] which
includes an extension of the C language and facilitates the programming of GPUs
for general purpose applications by preventing the programmer to deal with the
graphics details of the GPU.

A CUDA solver for one-layer systems based on the finite volume scheme pre-
sented in [3] is described in [6]. This one-layer shallow water CUDA solver obtains
a good exploitation of the massively parallel architecture of several NVIDIA
GPUs. In this work, we extend the proposal presented in [6] for the case of
two-layer shallow water systems and we study its performance. From the com-
putational point of view, the numerical solution of the two-layer system presents
two main problems with respect to the one-layer case: the need of using double
precision arithmetic for some calculations of the scheme and the need of man-
aging a higher volume of data to perform the basic calculations. Our goal is to
exploit efficiently the GPUs supporting CUDA and double precision arithmetic
in order to accelerate notably the numerical solution of two-layer shallow water
systems.

This paper is organized as follows: the next section describes the underlying
mathematical model, the two-layer shallow water system, and the finite-volume
numerical scheme which has been ported to GPU. A description of the data
parallelism of the numerical scheme and its CUDA implementation are presented
in Section 4. Section 5 shows and analyzes the performance results obtained
when the CUDA solver is applied to several test problems using two different
NVIDIA GPUs supporting double precision. Finally, Section 6 summarizes the
main conclusions and presents the lines for further work.

2 Mathematical model and Numerical Scheme

The two-layer shallow water system is a system of conservation laws and non-
conservative products with source terms which models the flow of two homoge-
neous fluid shallow layers with different densities that occupy a bounded domain



D ⊂ R2 under the influence of a gravitational acceleration g. The system has
the following form:
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where hi(x, y, t) ∈ R denotes the thickness of the water layer i at point (x, y) at
time t, H(x, y) ∈ R is the depth function measured from a fixed level of reference
and r = ρ1/ρ2 is the ratio of the constant densities of the layers (ρ1 < ρ2),
which in realistic oceanographical applications is close to 1 (see Fig. 1). Finally,
qi(x, y, t) = (qi,x(x, y, t), qi,y(x, y, t)) ∈ R2 is the mass-flow of the water layer i
at point (x, y) at time t .

To discretize System (1), the computational domain D is divided into L cells
or finite volumes Vi ⊂ R2, which are assumed to be quadrangles. Given a finite
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Fig. 1: Two-layer sketch.

volume Vi, Ni ∈ R2 is the centre of Vi, ℵi is the set of indexes j such that Vj is
a neighbour of Vi; Γij is the common edge of two neighbouring cells Vi and Vj ,
and |Γij | is its length; ηij = (ηij,x, ηij,y) is the unit vector which is normal to
the edge Γij and points towards the cell Vj [3] (see Fig. 2).

Fig. 2: Finite volumes

Assume that the approximations at time tn, Wn
i , have already been calcu-

lated. To advance in time, with ∆tn being the time step, the following numerical
scheme is applied (see [3] for more details):
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where |Vi| is the area of Vi , Hl = H(Nl) with l = 1, . . . , L, Aij ∈ R6×6 and
Sij ∈ R6 depends on Wn

i and Wn
j , Dij is a diagonal matrix whose coefficients



are the eigenvalues of Aij , and the columns of Kij ∈ R6×6 are the associated
eigenvectors.

To compute the n-th time step, the following condition can be used:

∆tn = min
i=1,...,L

{[∑
j∈ℵi | Γij |‖ Dij ‖∞

2γ | Vi |

]−1}
(3)

where γ, 0 < γ ≤ 1, is the CFL (Courant-Friedrichs-Lewy) parameter.

3 CUDA Implementation

In this section we describe the potential data parallelism of the numerical scheme
and its implementation in CUDA.

3.1 Parallelism sources

Figure 3a shows a graphical description of the main sources of parallelism ob-
tained from the numerical scheme. The main calculation phases, identified with
circled numbers, presents a high degree of parallelism because the computation
performed at each edge or volume is independent with respect to that performed
at other edges or volumes.

(a) Parallelism sources of the numerical
scheme

(b) General steps of the parallel algo-
rithm implemented in CUDA

Fig. 3: Parallel algorithm.

When the finite volume mesh has been constructed, the time stepping process
is repeated until the final simulation time is reached:



1. Edge-based calculations: Two calculations must be performed for each
edge Γij communicating two cells Vi and Vj (i, j ∈ {1, . . . , L}):
a) Vector Mij = |Γij |F−ij ∈ R6 must be computed as the contribution of

each edge to the calculation of the new states of its adjacent cells Vi and
Vj (see (3)). This contribution can be computed independently for each
edge and must be added to the partial sums Mi and Mj associated to
Vi and Vj , respectively.

b) The value Zij = |Γij | ‖ Dij ‖∞ must be computed as the contribution of
each edge to the calculation of the local ∆t values of its adjacent cells Vi
and Vj (see (2)). This contribution can be computed independently for
each edge and must be added to the partial sums Zi and Zj associated
to Vi and Vj , respectively.

2. Computation of the local ∆ti for each volume: For each volume Vi,
the local ∆ti is obtained as follows (see (3)): ∆ti = 2γ |Vi|Z−1i . In the same
way, the computation for each volume can be performed in parallel.

3. Computation of ∆t: The minimum of all the local ∆ti values previously
computed for each volume is obtained. This minimum ∆t represents the next
time step which will be applied in the simulation.

4. Computation of Wn+1
i : The (n + 1)-th state of each volume (Wn+1

i ) is
calculated from the n-th state and the data computed in previous phases, in
the following way (see (2)): Wn+1

i = Wn
i − ∆t

|Vi|Mi. This phase can also be

performed in parallel (see Fig. 3a).

As can be seen, the numerical scheme exhibits a high degree of potential data
parallelism and it is good candidate to be implemented on CUDA architectures.

4 Algorithmic details of the CUDA version

In this section we describe the parallel algorithm we have developed and its
implementation in CUDA. It is an extension of the algorithm described in [6]
to simulate two-layer shallow water systems. We consider problems consisting
in a bidimensional regular finite volume mesh. The general steps of the parallel
algorithm are depicted in Fig. 3b. Each processing step executed on the GPU is
assigned to a CUDA kernel. A kernel is a function executed on the GPU by many
threads which are organized forming a grid of thread blocks that run logically
in parallel (see [7] for more details). Next, we describe in detail each step:

– Build data structure: In this step, the data structure that will be used on
the GPU is built. For each volume, we store its initial state (h1, q1,x, q1,y,
h2, q2,x and q2,y) and its depth H. We define two arrays of float4 elements,
where each element represents a volume. The first array contains h1, q1,x,
q1,y and H, while the second array contains h2, q2,x and q2,y. Both arrays
are stored as 2D textures.
The area of the volumes and the length of the vertical and horizontal edges
are precalculated and passed to the CUDA kernels that need them.
We can know at runtime if an edge or volume is frontier and the value of the
normal ηij of an edge by checking the position of the thread in the grid.



– Process vertical edges and process horizontal edges: As in [6], we
divide the edge processing into vertical and horizontal edge processing. For
vertical edges, ηij,y = 0 and therefore all the operations where this term
takes part can be discarded. Similarly, for horizontal edges, ηij,x = 0 and all
the operations where this term takes part can be avoided.
In vertical and horizontal edge processing, each thread represents a vertical
and horizontal edge, respectively, and computes the contribution of the edge
to their adjacent volumes as described in section 3.1.
The edges (i.e. threads) synchronize each other when contributing to a parti-
cular volume by means of four accumulators (in [6] we used two accumulators
for one-layer systems), each one being an array of float4 elements. The size
of each accumulator is the number of volumes. Let us call the accumulators
1-1, 1-2, 2-1 and 2-2. Each element of accumulators 1-1 and 2-1 stores the
contributions of the edges to the layer 1 of Wi (the first 3 elements of Mi)
and to the local ∆t of the volume (a float value Zi), while each element of
accumulators 2-1 and 2-2 stores the contributions of the edges to the layer 2
of Wi (the last 3 elements of Mi). Then, in the processing of vertical edges:

◦ Each vertical edge writes in the accumulator 1-1 the contribution to
the layer 1 and to the local ∆t of its right volume, and writes in the
accumulator 1-2 the contribution to the layer 2 of its right volume.

◦ Each vertical edge writes in the accumulator 2-1 the contribution to
the layer 1 and to the local ∆t of its left volume, and writes in the
accumulator 2-2 the contribution to the layer 2 of its left volume.

Next, the processing of horizontal edges is performed in an analogous way,
but with the difference that the contribution is added to the accumulators
instead of only writing it. Figure 4 shows this process graphically.

(a) Vertical edge processing (b) Horizontal edge processing

Fig. 4: Computing the sum of the contributions of the edges of each volume.



(a) Contribution to ∆ti (b) Contribution to Wi

Fig. 5: Computation of the final contribution of the edges for each volume.

– Compute ∆ti for each volume: In this step, each thread represents a
volume and computes the local ∆ti of the volume Vi as described in section
3.1. The final Zi value is obtained by summing the two float values stored
in the positions corresponding to the volume Vi in accumulators 1-1 and 2-1
(see Fig. 5a).

– Get minimum ∆t: This step finds the minimum of the local ∆ti of the
volumes by applying a reduction algorithm on the GPU. The reduction al-
gorithm applied is the kernel 7 (the most optimized one) of the reduction
sample included in the CUDA Software Development Kit [8].

– Compute Wi for each volume: In this step, each thread represents a
volume and updates the state Wi of the volume Vi as described in section
3.1. The final Mi value is obtained as follows: the first 3 elements of Mi (the
contribution to layer 1) are obtained by summing the two 3×1 vectors stored
in the positions corresponding to the volume Vi in accumulators 1-1 and 2-1,
while the last 3 elements of Mi (the contribution to layer 2) are obtained
by summing the two 3 × 1 vectors stored in the positions corresponding
to the volume Vi in accumulators 1-2 and 2-2 (see Fig. 5b). Since a CUDA
kernel can not write directly into textures, the textures are updated by firstly
writing the results into temporary arrays and then these arrays are copied
to the CUDA arrays bound to the textures.

A version of this CUDA algorithm which uses double precision to perform
all the computing phases has also been implemented. The volume data is stored
in three arrays of double2 elements (which contain the state of the volumes)
and one array of double elements (the depth H). We use six accumulators of



double2 elements (for storing the contributions to Wi) and two accumulators of
double elements (for storing the contributions to the local ∆t of each volume).

5 Experimental Results

We consider an internal circular dambreak problem in the [−5, 5] × [−5, 5] rec-
tangular domain in order to compare the performance of our implementations.
The depth function is given by H(x, y) = 2 and the initial condition is:

W 0
i (x, y) = (h1(x, y), 0, 0, h2(x, y), 0, 0)

T

where

h1(x, y) =

{
1.8 if

√
x2 + y2 > 4

0.2 otherwise
, h2(x, y) = 2− h1(x, y)

The numerical scheme is run for several regular bidimensional finite volume
meshes with different number of volumes (see Table 1). Simulation is carried
out in the time interval [0, 1]. CFL parameter is γ = 0.9, r = 0.998 and wall
boundary conditions (q1 · η = 0, q2 · η = 0) are considered.

To perform the experiments, several programs have been implemented:

– A serial CPU version of the CUDA algorithm. This version has been imple-
mented in C++ and uses the Eigen library [9] for operating with matrices.
We have used the double data type in this implementation.

– A quadcore CPU version of the CUDA algorithm. This is a parallelization
of the aforementioned serial CPU version which uses OpenMP [13].

– A mixed precision CUDA implementation (CUSDP). In this GPU version,
the eigenvalues and eigenvectors of the Aij matrix (see Sect. 2) are computed
using double precision to avoid numerical instability problems, but the rest
of operations are performed in single precision.

– A full double precision CUDA implementation (CUDP).

All the programs were executed on a Core i7 920 with 4 GB RAM. Graphics
cards used were a GeForce GTX 280 and a GeForce GTX 480. Figure 7 shows
the evolution of the fluid. Table 1 shows the execution times in seconds for all the
meshes and programs. As can be seen, the number of volumes and the execution
times scale with a different factor because the number of time steps required
for the same time interval also augments when the number of cells is increased
(see (3)). Using a GTX 480, for big meshes, CUSDP achieves a speedup of 62
with respect to the monocore CPU version, while CUDP reaches a speedup of
38. As expected, the OpenMP version only reaches a speedup less than four in
all meshes. CUDP has been about 38 % slower than CUSDP for big meshes in
the GTX 480 card, and 24 % slower in the GTX 280 card.

In the GTX 480 card, we get better execution times by setting the sizes
of the L1 cache and shared memory to 48 KB and 16 KB per multiprocessor,
respectively, for the two edge processing CUDA kernels.



Table 1: Execution times in seconds for all the meshes and programs.

Mesh size CPU CPU GTX 280 GTX 480
L = Lx × Ly 1 core 4 cores CUSDP CUDP CUSDP CUDP

100 × 100 7.54 2.10 0.48 0.80 0.37 0.53
200 × 200 59.07 15.84 3.15 4.38 1.42 2.17
400 × 400 454.7 121.0 21.92 29.12 8.04 13.01
800 × 800 3501.9 918.7 163.0 216.1 57.78 94.57

1600 × 1600 28176.7 7439.4 1262.7 1678.0 453.5 735.6
2000 × 2000 54927.8 14516.6 2499.2 3281.0 879.7 1433.6

Table 2: Mean values of the percentages of the execution time and GPU FLOPS
for all the computing steps.

% Execution time % GPU
Computing step 1 core 4 cores CUSDP CUDP FLOPS

Process vertical edges 49.6 48.2 49.5 50.0 49.5
Process horizontal edges 49.8 48.6 49.4 48.5 49.9
Compute ∆ti
Get minimum ∆t

0.2
1.1 0.3 0.3 0.1
0.4 0.1 0.2 0.0

Compute Wn+1
i 0.4 1.7 0.7 1.0 0.5

Table 2 shows the mean values of the percentages of the execution time and
GPU FLOPS for all the computing steps and implementations. Clearly, almost
all the the execution time is spent in the edge processing steps.

Figure 6 shows graphically the GB/s and GFLOPS obtained in the CUDA im-
plementations with both graphics cards. In the GTX 480 card, CUSDP achieves
4.2 GB/s and 34 GFLOPS for big meshes. Theoretical maximums are: for the
GTX 480, 177.4 GB/s, and 1.35 TFLOPS in single precision, or 168 GFLOPS
in double precision; for the GTX 280, 141.7 GB/s, and 933 GFLOPS in single
precision, or 78 GFLOPS in double precision.

As can be seen, the speedup, GB/s and GFLOPS reached with the CUSDP
program are notably worse than those obtained in [6] with the single precision
CUDA implementation for one-layer systems. This is mainly due to two reasons.
Firstly, since double precision has been used to compute the eigenvalues and
eigenvectors, the efficiency is reduced because the double precision speed is 1/8 of
the single precision speed in GeForce cards with GT200 and GF100 architectures.
Secondly, since the register usage and the complexity of the code executed by
each thread is higher in this implementation, the CUDA compiler has to store
some data into local memory, which also increases the execution time.



(a) GB/s (b) GFLOPS

Fig. 6: GB/s and GFLOPS obtained with the CUDA implementations in all
meshes with both graphics cards.

(a) t = 0.0 (b) t = 2.5 (c) t = 5.0

Fig. 7: Graphical representation of the fluid evolution at different time instants.

We also have compared the numerical solutions obtained in the monocore
and the CUDA programs. The L1 norm of the difference between the solutions
obtained in CPU and GPU at time t = 1.0 for all meshes was calculated. The
order of magnitude of the L1 norm using CUSDP vary between 10−4 and 10−6,
while that of obtained using CUDP vary between 10−12 and 10−14, which reflects
the different accuracy of the numerical solutions computed on the GPU using
both single and double precision, and using only double precision.

6 Conclusions and further work

In this paper we have presented an efficient first order well-balanced finite vo-
lume solver for two-layer shallow water systems. The numerical scheme has been
parallelized, adapted to the GPU and implemented using the CUDA framework
in order to exploit the parallel processing power of GPUs. On the GTX 480 gra-
phics card, the CUDA implementation using both single and double precision
has reached 4.2 GB/s and 34 GFLOPS, and has been one order of magnitude
faster than a monocore CPU version of the solver for big uniform meshes. It is



expected that this results will significantly improve on a NVIDIA Tesla GPU
architecture based on Fermi, since this architecture includes more double pre-
cision support than the GTX 480 graphics card. The simulations carried out
also reveal the different accuracy obtained with the two implementations of the
solver, getting better accuracy using double precision than using both single and
double precision. As further work, we propose to extend the strategy to enable
efficient simulations on irregular and non-structured meshes.
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